Numerical Quadratures for Singular and Hypersingular Integrals in Boundary Element Methods
نویسنده
چکیده
A method is developed for the computation of the weights and nodes of a numerical quadrature which integrates functions containing singularities up to order 1/x2, without the requirement to know the coefficients of the singularities exactly. The work is motivated by the need to evaluate such integrals on boundary elements in potential problems and is a simplification of a previously published method, but with the advantage of handling singularities at the endpoints of the integral. The numerical performance of the method is demonstrated by application to an integral containing logarithmic, first, and second order singularities, characteristic of the problems encountered in integrating a Green’s function in boundary element problems. It is found that the quadrature is accurate to 11–12 decimal places when computed in double precision.
منابع مشابه
Flux and traction boundary elements without hypersingular or strongly singular integrals
The present paper deals with a boundary element formulation based on the traction elasticity boundary integral equation (potential derivative for Laplace’s problem). The hypersingular and strongly singular integrals appearing in the formulation are analytically transformed to yield line and surface integrals which are at most weakly singular. Regularization and analytical transformation of the ...
متن کاملClosed Form Integration of Singular and Hypersingular Integrals in 3D BEM Formulations for Heat Conduction
The evaluation of the singular and hypersingular integrals that appear in three-dimensional boundary element formulations for heat diffusion, in the frequency domain, is presented in analytical form. This improves computational efficiency and accuracy. Numerical integrations using existing techniques based on standard Gaussian integration schemes that incorporate an enormous amount of sampling ...
متن کاملImplicit boundary integral methods for the Helmholtz equation in exterior domains
We propose a new algorithm for solving Helmholtz equations in the exterior domain. The algorithm not only combines the advantages of implicit surface representation and the boundary integral method, but also provides a new way to compute a class of the so-called hypersingular integrals. The keys to the proposed algorithm are the derivation of the volume integrals which are equivalent to any giv...
متن کاملTransformation of hypersingular integrals and black-box cubature
In this paper, we will consider hypersingular integrals as they arise by transforming elliptic boundary value problems into boundary integral equations. First, local representations of these integrals will be derived. These representations contain so-called finite-part integrals. In the second step, these integrals are reformulated as improper integrals. We will show that these integrals can be...
متن کاملA General New Algorithm for Regulaization of Singular Integrals in Three-Dimensional Boundary Elemnts
In this paper an algorithm is presented for the regularization of singular integrals with any degrees of singularity, which may be employed in all three-dimensional problems analyzed by Boundary Elements. The integrals in Boundary Integrals Equations are inherently singular. For example, one can mention the integrals confronted in potential problems to evaluate the flow or the gradient of the f...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- SIAM J. Scientific Computing
دوره 29 شماره
صفحات -
تاریخ انتشار 2007